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Abstract. This paper describes how to analytically characterize the connectivity of neuromorphic networks
taking into account the morphology of their elements. By assuming that all neurons have the same shape
and are regularly distributed along a two-dimensional orthogonal lattice with parameter ∆, we obtain the
exact number of connections and cycles of any length by applying convolutions and the respective spectral
density derived from the adjacency matrix. It is shown that neuronal shape plays an important role in
defining the spatial distribution of synapses in neuronal networks. In addition, we observe that neuromor-
phic networks typically present an interesting property where the pattern of connections is progressively
shifted along the spatial domain for increasing connection lengths. This arises from the fact that the axon
reference point usually does not coincide with the cell center of mass of neurons. Morphological mea-
surements for characterization of the spatial distribution of connections, including the adjacency matrix
spectral density and the lacunarity of the connections, are suggested and illustrated. We also show that
Hopfield networks with connectivity defined by different neuronal morphologies, which are quantified by
the analytical approach proposed herein, lead to distinct performances for associative recall, as measured
by the overlap index. The potential of our approach is illustrated for digital images of real neuronal cells.

PACS. 89.75.Fb Structures and organization in complex systems – 87.18.Sn Neural networks
– 02.10.Ox Combinatorics; graph theory

1 Introduction

A particularly meaningful way to understand neurons is
as cells optimized for selective connections, i.e. they con-
nect to each other in a way as to achieve proper circuitry
and behavior. Indeed, the intricate shape of dendritic and
axonal trees provides a means for connecting with spe-
cific targets while minimizing both the cell volume and its
metabolism (e.g. [1,2]). Great attention has been placed
on the importance of synaptic strength over the emerging
neuronal behavior. On the other hand, geometrical fea-
tures, such as the shape and spatial distribution of the
involved neurons, are closely related to the network con-
nectivity. In addition, the topographical organization and
connections pervading the mammals’ cortex provide fur-
ther indication that adjacencies and spatial relationships
are fundamental for information processing by biological
neuronal networks. The importance of neuronal geome-
try has been reflected by the growing number of related
works (see, for instance, [3]). However, most of such ap-
proaches target the characterization of neuronal morphol-
ogy in terms of indirect and incomplete (i.e. degenerated)
measurements such as area, perimeter and fractal dimen-
sion of the dendritic and axonal arborizations. Interesting
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experimental results regarding the connectivity of neu-
ronal cells growth in vitro have been reported in [4,5] and
what is possibly the first direct computational approach
to neuronal connectivity was only recently reported in [6],
where experimental estimation of the critical percolation
density as neuronal cells were progressively superposed
onto a two-dimensional domain. At the same time, recent
advances in complex network formalism (e.g. [7–11]) pro-
vide a wealthy of concepts and tools for addressing con-
nectivity. Initial applications of such a theory to bridge the
gap between neuronal shape and function were reported
in [12,13].

As the investigation of the relationship between neu-
ronal shape and function is underlain by computational
approaches involving numerical methods and simulation,
a need arises to develop an analytical framework for neu-
romorphic characterization that could lead to additional
insights and theoretical results regarding the relationship
between neuronal shape and function. The present work
describes an analytical approach capable of characteriz-
ing the connectivity of neuronal networks composed by
repetitions along the space of the same neuron, taking
into account explicitly the cell morphology. Such a kind
of network can be considered as a “toy model” for bio-
logical neuronal systems characterized by a high degree
of planarity, such as ganglion cell retinal mosaics [14],
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Purkinje cells, and the basal dendritic arborization of cor-
tical pyramidal cells. The extension of such a methodol-
ogy to three-dimensional neuronal systems is conceptually
straightforward but it will not be considered in the cur-
rent work because of computational limitations. The un-
derlying idea of the proposed analytical approach is to use
the symmetries induced by the periodical boundary con-
ditions in order to allow the connecting matrix describing
the network to become a circulant matrix. Important fea-
tures such as the number of connections and cycles can
then be exactly obtained from the spectrum of this matrix.
The morphological atributes of the spatial distribution of
points, as characterized by the concept of Lacunarity1, is
also considered (see details in Sect. 3) as a complementary
measurement of the connectivity pattern.

The effect of different neuronal shapes over the dy-
namics of the respective neuronal systems (Hopfield) built
upon such connections is then investigated by using the
proposed methodology. It is shown that neuronal shape
not only plays an important role in defining the spatial
distribution of synapses in neuronal networks, but also
imposes critical constraints over the respective behavior.

2 Methodology

The analytical representation of the connectivity of a neu-
ronal network results from the convolution of a function,
which represents the neuronal cell, with Dirac deltas. The
adopted basic construction is illustrated in Figure 1, where
the convolution of the neuronal cell g(x) in (b) with the
Dirac delta f(x) in (a) produces a copy of the original cell
at the position of the delta (c). This can be mathemati-
cally expressed as

δ(x − a) ∗ g(x) = g(x − a), (1)

where the operation ∗ stands for the usual definition
of the convolution integral between two images u(r)
and v(r), i.e.

h(r) = (u ∗ v)(r) =
∫ r

0

u(τ )v(r − τ )dτ . (2)

Let the neuronal cell be represented in terms of the
triple η = [A, S, D] where A is the set of points belonging
to its axonal arborization, S is the set of points corre-
sponding to the respective soma (neuronal body) and D
are the dendritic arborization points. For simplicity’s sake,
a finite and discrete neuronal model is considered prior
to its continuous general formulation. We therefore as-
sume that the points used to represent the neuron be-
long to the square orthogonal lattice Ω = {1, 2, . . . , N} ×
{1, 2, . . . , N}, with parameter ∆ = 1. Initially, the axon
and soma are represented by a single point each. Such

1 This quantity, which is inversely related to the degree of
translational invariance of the analyzed patterns [15–19], is
frequently applied in order to complement fractal dimension
characterization.

Fig. 1. The convolution of an axon function with a dendritic
distribution.

Fig. 2. The geometry of a simplified neuronal cell represented
in terms of its axon A, soma centroid S and dendrite points Di.

points could be understood as corresponding to the tip of
the axon and the soma center of mass, respectively. The
dendritic arborization is represented in terms of the finite
set of dendrite points D = D1, D2, . . . , DM and, in order
to prevent loops, it is henceforth assumed that a dendrite
point never coincides with the axon. Figure 2 illustrates
such a geometrical representation for a neuron with 3 den-
drite points. Observe that the coordinate origin coincides
with the axon, which is taken as reference for the soma
and dendrite coordinates, and the arrows refer to the rel-
ative positions of the soma and dendrites and not to the
direction of signal transmission by a real neuronal cell,
which occurs in the opposite direction (i.e. from dendrites
to axon). Neuromorphic networks (actually digraphs [8])
can now be obtained by placing one such a neuron at all
possible nodes of the orthogonal lattice Ω.

A connection is established whenever an axon is over-
laid onto a dendrite point. The resulting connection pat-
tern stands out as a particularly important feature of the
obtained network, as it defines the possible communica-
tions between the cells. Thus, it is important to derive
analytical expressions which describe the respective neu-
ronal connectivity, e.g. by considering the spatial distri-
bution of paths and cycles of any specific length along the
network.

We start by considering the connections with a single
specific neuron i placed with its axon at position p, illus-
trated in Figure 3 together with four other neuronal cells
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Fig. 3. The neurons connected through unit-length paths to
neuron i which is placed with its axon A at p can be obtained
through the convolution between the position δ(p) of neuron i
with the function representing the dendritic structure.

at positions c1, c2, c3 and c4. Given the particular geom-
etry of the basic cell, three connections are implied with
the cells at c1, c2 and c3 whose dendrites coincide with
the axon of the cell i. For cell c1, this situation can be
mathematically expressed as c1 = p− d1 − s. The fourth
cell c4 illustrates one of the many neurons which are not
connected to cell i.

Two directly connected cells, as described above, are
henceforth represented as two nodes connected by a unit-
length path (a simple arc) of a respectively associated di-
rected graph. As is clear from this construction, the set of
neurons connected to i through unit-length paths can be
obtained by convolving the initial point2 δ(p) (the tip of
the axon), and the function g(x, y) represents the neuronal
cell, i.e.

g(x, y) = δ(−d1 − s) + δ(−d2 − s) + δ(−d3 − s), (3)

where the minus signs mean that the function represent-
ing the cell shape can be flipped along both axes, so as
to obtain adequate propagation of the connections, i.e.
from the axon to the dendrites. For instance, in Figure 3,
the propagation of information proceeds from the original
axon at p to the dendrites at c1, c2, and c3.

More generally, given a set of initial neurons with
axons represented as a sum of Dirac deltas ξ(x, y), the
density of dendrites connected to those neurons by unit-
path lengths can be obtained from equation (4). Observe
that χ(x, y) may contain Dirac deltas with intensities
larger than one, resulting from sums of coinciding deltas.
The function ν(x, y) in equation (5) is analogous to χ(x, y)
but here all Dirac deltas in that function are replaced by
unit Dirac deltas. Such a procedure is required in order
to take into account the restriction that only one synapsis
can be established at each point along the 2D dendrites.

2 Unless mentioned otherwise, we use a simplified notation
for the Dirac delta function δ(x − a) = δ(a).

The above formulation can be easily extended to
higher orders of path lengths. The function expressing the
density of the dendrites connected to the original neurons
through paths of length k (see footnote3) is given by equa-
tion (6). Equation (7) is a generalization of equation (5).
The number of connections with length k is quantified by
equation (8), which can be used as an additional feature
for characterizing the connectivity of the obtained net-
works. Observe that the use of the Dirac delta function
in such a formulation allows the immediate extension of
such results to continuous spatial domains.

χ(x, y) = g(x, y) ∗ ξ(x, y) (4)

ν(x, y) =

{
δ(x, y) if χ(x, y) �= 0
0 otherwise.

(5)

χk(x, y) = g(x, y) ∗ . . . ∗ g(x, y)︸ ︷︷ ︸
k×

ξ(x, y) (6)

νk(x, y) =

{
δ(x, y) if χk(x, y) �= 0
0 otherwise.

(7)

τk(x, y) =
k∑

j=1

(νj(x, y)). (8)

While the analytical characterization of the connec-
tivity of the considered network model has been allowed
by the fact that identical neuronal shapes are distributed
along all points of the orthogonal lattice, it is interest-
ing to consider extensions of such an approach to other
situations. For example, we can consider sparser config-
urations, characterized by a larger lattice parameter ∆.
Such an extension involves sampling the neuronal cell im-
age at larger steps. Figure 4 shows two digital images4,
obtained from real ganglion cells, (a) and (b), and their
respective functions χk(x, y) (given by Eq. (6)) for k = 2
and 3. The axon has been placed over the centroid of the
neuronal shape (including soma and dendrites), whereas
the dendritic trees have been spatially sampled into 2033
and 671 pixels, respectively. Figure 5 shows χk(x, y) ob-
tained for the cell in Figure 4a but with the soma located
at the cell center of mass, which is displaced from the cell
centroid by s = (0, 7) pixels. It should be observed that
retinal ganglion cells do not synapse one another, rather
they project outside the retina (the optic nerve). However,
as they are mostly planar, such a type of neuron pro-
vides a particularly suitable illustration of the proposed
methodology.

The effect of considering a more substantial axon
(rather than a single point) is illustrated in Figure 6
and formalized in equations (9–11). First, the original

3 A path of length k between two nodes corresponds to a
sequence of k connected edges found between those two nodes.

4 The neuronal cell images in this figure and in the subse-
quent ones were adapted with permission from [14].
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Two real neuronal cells (a-b) and their respective total
number of connections of length k = 2 (c-d) and 3 (e-f). The
axon has been placed at the cell centroid (considering soma
plus dendrites).

dendrites d(x, y), represented in darker gray-level in Fig-
ure 6a, are convolved with the axon a(x, y), represented
in lighter gray-level in the same figure, in order to obtain
the distribution b(x, y) shown in Figure 6b and given by
equation (9), which is subsequently thresholded in order
to obtain a binary image c(x, y) (i.e. an image composed
of zeroes and ones) as given in equation (10) and displayed
in Figure 6c. Such an image represents an enlarged tar-
get for connections with other cells, implied by the fact
that the axon is no longer a point, but a generic shape.
The distribution of connections r(x, y) is finally obtained
by convolving the image 6c with the dendrite profile, as
expressed in equation (11) and illustrated in Figure 6d.

b(x, y) = d ∗ a (9)

c(x, y) =

{
1 if b(x, y) > 0
0 otherwise.

(10)

r(x, y) = d(x, y) ∗ c(x, y). (11)

Figure 7 shows the obtained distribution of synaptic con-
nections as the axon is progressively extended. Clearly,
the effect of the axon is to imply a broader dispersion of
the connections that take into account its intrinsic shape.
It should be noticed that, in reality, axons are frequently
longer than dendrites in the same neuron, and also branch
profusely. Therefore, the use of shorter axons in the above
examples are mainly for the sake of a more effective graph-
ical illustration.

(a) (b)

(c) (d)

Fig. 5. The total number of connections of length k = 1 (a),
2 (b), 3 (c) and 4(d) for the neuronal cell in Figure 4a with the
axon displaced from the cell centroid by s = (0, 7) pixels.

(a) (b)

(c) (d)

Fig. 6. Sequence of operations required in order to incorpo-
rate generic axonal shape, shown here in lighter gray, into the
proposed approach: (a) original neuron; (b) the convolution
between its axon and dendrites; (c) the thresholded version of
such a convolution; and (d) the distribution of connections ob-
tained by convolving the image in (c) with the dendrites in (a).

It is clear from such results that the neuronal morphol-
ogy strongly determines the connectivity between cells in
two important senses: (i) the spatial scattering of the
dendrite points influences the connectivity distribution
and (ii) the relative position of the axon defines how the
centroid of the connections shifts for increasing values of k.
While the increased number of synaptic connections im-
plied by denser neuronal shapes is as expected, it is clear
from the example in Figure 5 that the distance from the
axon to the cell center of mass implies spatial displace-
ment of the connection pattern. Given the predominantly
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Fig. 7. The role of the axon (in light gray) in defining the
connectivity pattern. The connection profile follows the change
of the axon, moving toward the same direction.

two-dimensional structure of the mammals’ cortex, such
an effect provides an interesting means to transmit infor-
mation horizontally along such structures. In other words,
faster signal transmission along the cortical surface is
achieved whenever the axon is placed further away from
the dendritic tree. As the proper characterization, classifi-
cation, analysis and simulation of neuromorphic networks
are all affected by these two interesting phenomena, it is
important to derive objective related measurements. The
next section addresses the characterization of the mor-
phology of such networks.

3 Morphology

Let Pk(x, y) be a density function obtained by normaliz-
ing χk(x, y), i.e.

Pk(x, y) =
χk(x, y)∫ ∞

−∞ χk(x, y)dxdy
. (12)

The spatial scattering of the connections can be quanti-
fied in terms of the respective covariance matrix Kk [20]
of the scalar field Pk(x, y), and the spatial displacement of
the centroid of Pk(x, y) can be quantified in terms of the
‘speed’ magnitude v = ||s||. Additional geometrical mea-
surements of the evolution of the neuronal connectivity
that can be derived from the covariance matrix Kk in-
clude the angle αk that the distribution main axis makes
with the x-axis and the ratio ρk between the largest and
smallest respective eigenvalues.

Additional information about the morphological prop-
erties of the connections implied by the geometry of the
individual cells can be obtained from the respective adja-
cency matrix A, which represents the existing connections
between the cells. Figure 8 illustrates the steps required in

A =

��
��
��
��

��
��
��
��

(b)(a)

(c)

Fig. 8. The procedure to build the adjacency matrix A from
the shape of the neuronal cell. (a) A prototypical neuron repre-
sented as a matrix, M . (b) The rearrangement scheme and (c)
the circulant matrix A, where a black square means value 1
and a white square indicates value 0.

order to obtain matrix A. First, the original cell is repre-
sented as a matrix as shown in Figure 8a, which is subse-
quently rearranged as a row vector as shown in Figure 8b.
The mathematical description of this operation is given by

A(1, j) = M(mod(j − 1, N) + 1, �j/n�+ 1). (13)

The first row of matrix A is now obtained by copying
the resulting vector shown in Figure 8b. The remaining
rows of A are obtained by circulating the first line along
the matrix, as shown in Figure 8c. As a consequence, A
becomes a circulant matrix.

An interesting network feature related to connectivity
is its number C�,k of cycles of length � established by the
synaptic connections, which can be obtained from the di-
agonal of the integer powers of the adjacency matrix A.
The N2 eigenvalues of the thus obtained adjacency ma-
trix [7] of the whole two-dimensional network are hence-
forth represented as λi, i = 1, 2, . . . , N2. As A is circulant,
these eigenvalues can be immediately obtained from the
Fourier transform of its first row. Observe that the sim-
plicity and speed of such an approach allow for systematic
investigation of a variety of different neuronal shapes. As
the cell reference point is assumed never to coincide with
a dendrite point, we also have that

∑N
r=1 λr = 0. As A is a

non-negative matrix, there will always be a non-negative
eigenvalue λM , called the dominant eigenvalue of A, such
that λr ≤ λM for any r = 1, 2, . . . , N . The spectral density
(e.g. [7]) of the adjacency matrix, defined as

ρ(λ) =
1
N

N∑
r=1

δ(λ − λr), (14)

where λp is the pth eigenvalue of A, provides an additional
way to characterize the topology of the obtained networks.

The eigenvalue λM , which depends on the specific dy-
namics through which new edges are incorporated into the
network, represents an interesting parameter for charac-
terizing the cyclic composition of complex networks. Fig-
ures 9a and b show the real part (recall that the adjacency
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(a) (b)

Fig. 9. Spectral density of the adjacency matrices obtained
for the neuronal cells in Figure 4 considering ∆ = 1 (a) and
∆ = 5 (b). The crossed lines refer to the sparser neuronal cell.

matrix for a digraph is not necessarily symmetric) of the
spectral density of the adjacency matrices obtained for the
neuronal cells in Figures 4a and b considering lattice spac-
ings ∆ = 1 and 5. The wider dispersion of the spectrum of
the denser cell in Figure 9a reflects a higher potential for
connections of that neuron in both cases. It is also clear
that the separation of cells by ∆ = 5 leads to a substan-
tially smaller spectrum, with immediate implications for
the respective neuronal connectivity.

An additional morphological property of the spatial
distribution of the connections is their respective lacunar-
ity (e.g. [19]), which expresses the degree of translational
invariance of the obtained densities. Therefore, lower val-
ues of lacunarity indicate that the analysed patterns (in
our case the synapses) are more uniformly distributed
along the considered space. An opposite effect is observed
for higher lacunarity values. All in all, a neuronal cell ex-
hibiting high lacunarity tends to be characterized by a
more uniform pattern of synapses with other neighboring
cells. This functional may be calculated by moving a win-
dow of a given radius r centered at (x, y) throughout the
whole image as the number N(r, x, y) of object points that
falls inside it are recorded. The standard deviation σ(r)
and the mean values µ(r) of N(r, x, y), for each window
size r, are used to calculate the lacunarity for the scale
given by r through the formula

L(r) =
σ(r)
µ(r)2

. (15)

Figure 10 shows the lacunarities of the connection densi-
ties obtained for the two considered cells with respect to
k = 1 to 4. It is interesting to observe that most of the
lacunarity differences are observed for k = 1, with sim-
ilar curves being obtained for larger values of k. At the
same time, the denser cell led to lower lacunarity values.
Given their immediate implications for neuronal connec-
tivity, the above proposed set of neuronal shape measure-
ments present specially good potential for neuron charac-
terization and classification.

4 Associative recall

One of the most important functional properties of
Hopfield neuronal networks is their associative recall,

(a) (b)

Fig. 10. Examples of lacunarity: (a) for the neuron in
Figure 4a; (b) for the neuron in Figure 4b.

which can be quantified by the overlap measurement,
obtained by comparing the originally trained and the re-
covered patterns. A Hopfield network is completely deter-
mined by its respective connecting matrix, which in the
case of the models considered in the present work is con-
strained by the adjacency matrix derived from the mor-
phological structure in the sense that only the weights cor-
responding to existing connections are allowed to vary [13].
Therefore, the shape of the neuron has a direct impact on
the performance of the network, which is chiefly dictated
by the null-space of the adjacency matrix spectrum [21].
The analytical approach introduced in the current work
can be immediately used for the estimation of overlaps
considering different neuronal shapes.

In the standard Hopfield setup the cells are either firing
(Si = 1) or silent (Si = −1) and are updated according to
the rule

Si → sign

(∑
k

JikSk

)
(16)

with synaptic strengths Jik =
∑

µ ξµ
i ξµ

k (Hebb rule) if i

and k are connected, where ξµ
i = ±1, µ = 1, 2, . . . P,

are P random bit-strings called input patterns, and one of
them, perturbed uniformly along its extent, is supposed
to be recalled by this updating rule (i.e. associative mem-
ory). The quality of recall is measured by the overlap
Ψ =

∑
i Siξ

1
i if the first pattern is supposed to be re-

covered.
We consider the simple prototypical cell patterns pre-

sented in Figure 11. A network was obtained for each cell
shape by using the above formalism, and a non-randomly
diluted Hopfield model with such connection matrix was
then implemented for the networks and serially repeated
a hundred times to gain statistical significance. All three
networks consist of 441 neurons and the memory model
is set to recall 25 background patterns with 20 percent
of noise. For efficiency’s sake, the recovering stage stops
whenever a stable point (or reasonable fixed limit) is
reached. To incorporate the effect of changing the axons
position, which is potential significant from the biologi-
cal point of view, we perturbed the reference point of the
axon randomly and gradually. This allowed us to study
the robustness of the memory model.

Figure 12 shows the overlaps obtained while consid-
ering three simple neuronal shapes, namely the artificial
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Fig. 11. Three prototypical cell shapes used in the morpho-
logical Hopfield simulation.
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Fig. 12. The overlap curves for three different cell shapes
shown in Figure 11.

neuronal cell, a line and a cross shown in Figure 11. Each
of these shapes have the same area (i.e. number of pixels).
For each cell pattern we have three overlap curves repre-
senting respectively: the lattice as it is, a perturbed version
with one percent of uniform noise (in pixels), and another
perturbed version with ten percent noise. Although the in-
fluence of such perturbations are masked by the stochastic
nature of the system, we can see that as far the overlaps
are taken as an indication of performance, the model is
robust to network topology changes and sensitive to neu-
ronal shape. An order clearly emerged in the overlaps al-
beit, as indicated by the large deviation, it is a visibly
degenerated morphological measure. The more spatially
distributed shapes tended to lead to better performance.
The eigenvalues for each of the three considered cases are
illustrated graphically in Figure 13. It is clear from this
figure that the eigenvalues tend to organize symmetrically
with respect to the real axis. Also, the eigenvalue disper-
sions obtained for the cases line, cross and cell tended
to be progressively broader, reflecting their original spa-
tial structure. In other words, shapes more uniform and
isotropically distributed along space tended to produce
broader eigenvalue distributions. The better overlap fig-
ures obtained for sparser patterns is closely related to
the fact that more distributed eigenvalues are obtained
in those cases, reducing the null space for memory repre-
sentation.
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Fig. 13. The spectrum of the adjacency matrix A (represented
in the complex plane) for the three different cell shapes shown
in Figure 11, the marked inset is zoomed in Figure 14.
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Fig. 14. The spectrum of the adjacency matrix A zoomed from
the inset of Figure 13, showing the spread in the distribution
of eigenvalues for the considered patterns.

5 Conclusions

An analytical approach to the characterization of neuronal
connectivity was proposed and illustrated with respect to
synthetic and real neurons. It was shown that the connec-
tions of progressive length established along the neuronal
structure can be precisely quantified in terms of convo-
lutions involving the individual shape of the neuron den-
drites and axon. The analysis of the connectivity pattern
in terms of spectral dispersion and lacunarity was also pro-
posed and illustrated. In addition, we have shown that, by
assuming a specific type of periodical boundary condition,
it is possible to construct a circulant matrix whose spec-
trum can be conveniently calculated and used to charac-
terize the topological properties of the neuronal structure.
In order to illustrate the interplay between neuronal shape
and function, we also implemented Hopfield networks hav-
ing weights constrained by the adjacency matrices defined
as a consequence of the individual neuronal cell geometry.
The performance of such networks, quantified in terms of
the overlap measurement, was shown to be strongly re-
lated to the morphology of the adopted neurons.

Although the proposed methodology assumes identi-
cal, uniformly distributed neuronal cells, it is expected
that they provide a reference model for investigating real
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networks characterized by a certain degree of regularity,
such as some subsystems found in the retina and cortex.
Preliminary corroborations of such a possibility were pro-
vided by the fact that our overlap simulations tended to
be robust to small lattice perturbations. Mean-field exten-
sions of the reported approach are currently being inves-
tigated.

This work was financially supported by FAPESP (pro-
cesses 02/02504-01, and 99/12765-2 and CNPQ (process
308231/03-1).
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